涪陵实验中学教育科研网
当前位置:首页 > 课题研究 > 详细内容
浅谈数学美的表现形式
发布时间:2010/6/27  阅读次数:1292  字体大小: 【】 【】【
浅谈数学美的表现形式
重庆市涪陵实验中学     杜容
  
著名数学家陈省身先生曾不止一次地提出:“数学是美的。”数学的美体现在方方面面,也许美在她是探求世间现象规律的出发点,也许美在她用几个字母符号就能表示若干信息的简单明了,也许美在她大胆假设和严格论证的伟大结合,也许美在她对一个问题论证时殊途同归的奇妙感受,也许美在数学家耗尽终生论证定理的锲而不舍,也许美在她在几乎所有学科中的广泛应用。
从数学内容看,有概念之美、公式之美、体系之美等;从数学的方法及思维看,有简约
之美、类比之美、抽象之美、无限之美等;从狭义美学意义上看,有对称之美、和谐之美、奇异之美等。
(一)语言美
         数学有着自身特有的语言----数学语言,其中包括:
1   数的语言---符号语言
  关于“ ” ,《九章算术》 如斯说:“割之弥细,所失弥小,割之又割,以至于不可割,则与圆合体,而无所失矣”;面对“ ”这一差点被无理的行为淹没的无理数,我们一直难以忘怀那位因发现“边长为1的正方形,其对角线长不能表示成整数之比”这一“数学悖论”而被抛进大海的希帕索斯(公元前五世纪毕达哥拉斯学派成员)。还有sin∂、∞ 等等,一个又一个数的语言,无不将数的完美与精致表现得淋漓尽致。
  2 形的语言—视角语言
  从形的角度来看——对称性(“中心对称”、“轴对称”演绎了多少遥相呼应的缠绵故事);比例性(美丽的“黄金分割法”分出的又岂止身材的绝妙配置?);和谐性(如对数中:对数记号、底数以及真数三者之间的关联与配套实际上是一种怎样的经典的优化组合!);鲜明性(“最大值”、“最小值” 让我们联想起——“山的伟岸”与“水的温柔”,并深切地感悟到:有山有水的地方,为何总是人杰地灵的内在神韵……)和新颖性(一个接一个数学“悖论”的出现,保持了数学乃至所有自然科学的新鲜与活力)等等。
    (二)简洁美
  世事再纷繁,加减乘除算尽;
  宇宙虽广大,点线面体包完。
  这首诗,用字不多,却到位地概括出了数学的简洁明了,微言大义。数学和诗歌一样,有着独特的简洁美。
  欧拉给出的公式:V-E+F=2,堪称“简洁美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?!
在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。
比如:圆的周长公式:C=2πR
勾股定理:直角三角形两直角边的平方和等于斜边的平方
正弦定理:ΔABC的外接圆半径R,则
数学的这种简洁美,用几个定理是不足以说清的,数学历史中每一次进步都使已有的定理更简洁。 最为典型的例子,莫过于二进制在计算机领域的的应用。试想,任何一个复杂的指令,都被译做明确的01数字串,这是多么伟大的一个构想。可以说,没有数学的简化,就没有现在这个互联网四通八达、信息技术飞速发展的时代。
  (三)和谐美
  美是和谐的.和谐性也是数学美的特征之一.和谐即雅致、严谨或形式结构的无矛盾性.
  和谐的美,在数学中多得不可胜数。如著名的黄金分割比 ,即0.61803398…。
在正五边形中,边长与对角线长的比是黄金分割比。建筑物的窗口,宽与高度的比一般为 ;人们的膝盖骨是大腿与小腿的黄金分割点,人的肘关节是手臂的黄金分割点,肚脐是人身高的黄金分割点;当气温为23摄氏度时,人感到最舒服,此时23:37(体温)约为0.618;名画的主题,大都画在画面的0.618处,弦乐器的声码放在琴弦的0.618处,会使声音更甜美。建筑设计的精巧、人体科学的奥秘、美术作品的高雅风格,音乐作品的优美节奏,交融于数的对称美与和谐美之中。
 黄金分割比在许多艺术作品中、在建筑设计中都有广泛的应用。达·芬奇称黄金分割比 为“神圣比例”.他认为“美感完全建立在各部分之间神圣的比例关系上”。
  
有关的问题还有许多, “黄金分割”、“神圣比例”的美称,她受之无愧。
  (四)奇异美
  全世界有很大影响的两份杂志曾联合邀请全世界的数学家们评选“近50年的最佳数学问题”,其中有一道相当简单的问题:有哪些分数 ,不合理地把b约去得到 ,结果却是对的?
  经过一种简单计算,可以找到四个分数: 。这个问题涉及到“运算谬误,结果正确”的歪打正着,在给人惊喜之余,不也展现一种奇异美吗。
  人造卫星、行星、彗星等由于运动的速度的不同,它们的轨道可能是椭圆、双曲线或抛物线,这几种曲线的定义如下:到定点距离与它到定直线的距离之比是常数e的点的轨迹,
  当e<1时,形成的是椭圆.当e>1时,形成的是双曲线.当e=1时,形成的是抛物线.
  常数e由0.999变为1、变为0.001,相差很小,形成的却是形状、性质完全不同的曲线。而这几种曲线又完全可看作不同的平面截圆锥面所得到的截线。
  椭圆与正弦曲线会有什么联系吗?做一个实验,把厚纸卷几次,做成一个圆筒。斜割这一圆筒成两部分。如果不拆开圆筒,那么截面将是椭圆,如果拆开圆筒,切口形成的即是正弦曲线。这其中的玄妙是不是很奇异、很美。
  (五)对称美
  在古代“对称”一词的含义是“和谐”、“美观”。毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。圆是中心对称圆形――圆心是它的对称中心,圆也是轴对称图形――任何一条直径都是它的对称轴。
  梯形的面积公式:S=
  等差数列的前n项和公式:
  其中a是上底边长,b是下底边长,其中a­是首项,a是第n项,这两个等式中,a与a是对称的,b与a是对称的。h与n是对称的。
  对称美的形式很多,对称的这种美也不只是数学家独自欣赏的,人们对于对称美的追求是自然的、朴素的。如我们喜爱的对数螺线、雪花,知道它的一部分,就可以知道它的全部。李政道、杨振宁也正是由对称的研究而发现了宇称不守恒定律。从中我们体会到了对称的美与成功。
  (六)抽象美、自由美
从初等数学的基本概念到现代数学的各种原理都具有普遍的抽象性与一般性。
  数学的第一特征在于她具有抽象思维的能力,在数学中所处理的是抽象的量,是脱离了具体事物内容的用符号表示的量。它可以成为任何一个具体数的代数,但它又不等于任何具体数。比如“N”表示自然数,它不是N个岗位,N只鸡或N张照片……也不是哪一个具体的数,分不清是0 ?是1?或者说100?……“知道”中蕴含着“不知道”,“具体”中充满了“不具体”,它就是这样一个抽象的数!
       达·芬奇是15至16世纪的一位艺术大师和科学巨匠。他用一句话概括了他的《艺术专论》的思想:“欣赏我的作品的人,没有一个不是数学家”
  历史上不少著名人物都迷恋音乐,大数学家克兰纳克就是一例。一位数学王子何以如此迷恋音乐?原因也许是多方面的,依我看,最重要的一点就是数学和音乐均为一种抽象语言,它们都充满了抽象美、自由美。而且,数学和音乐还是两个人造的金碧辉煌的世界,前者仅用十个阿拉伯数字和若干符号便造出了一个无限的、绝对真的世界,后者仅用五条线和一些蝌蚪状的音符就造出了一个无限的、绝对美的世界。如果说,音乐是人类感情活动最优美的表现,那么数学便是人类理性活动最惊人的产品。
  数学的力量是无穷的,数学美犹如但丁神曲中的诗句,优美和谐的乐曲,别具一格的绘画,雄伟壮美的建筑,同样会使数学学习者们激情荡漾,兴趣盎然!数学之美,还可以从更多的角度去审视,而每一侧面的美都不是孤立的,她们是相辅相成、密不可分的。她需要人们用心、用智慧深层次地去挖掘,更好地体会她的美学价值和她丰富、深隧的内涵和思想,及其对人类思维的深刻影响。如果在学习过程中,我们能与数学家,教师们一起探索、发现,从中获得成功的喜悦和美的享受,那么我们就会不断深入其中,欣赏和创造美。相信我们的数学学习一定能够取得更好的学习效果。     
我要评论
  • 匿名发表
  • [添加到收藏夹]
  • 发表评论:(匿名发表无需登录,已登录用户可直接发表。) 登录状态:未登录
最新评论
所有评论[0]
    暂无已审核评论!
重庆市涪陵实验中学校  
电话:023-72861300  地址:重庆市涪陵区兴华西路2号